Регистрация

Версия для слабовидящих
Никогда не учите ребенка тому, в чем вы сами не уверены, и если вы хотите что-нибудь внушить ему в нежные годы, чтобы чистота детства и сила первых сочетаний запечатлели это в нем, то берегитесь больше всего, чтобы это не была ложь, про которую вы и сами знаете, что это ложь
Джон Рёскин
Сертификат владельца сайта
Сертификат владельца сайта http://www.kuksova-irina.ru/
Центр дистанционного образования

 

 

 

 
Мир олимпиад

ФГОС урок

Высшая школа делового администрирования

Установите себе наш баннер

Показать код баннера
Сейчас на сайте: 7
Школа "Карьера"
Проголосуй за наш сайт
Оцените мой сайт





Результаты
счетчик посещений
Банк Интернет-портфолио учителей
Периодическая таблица
Таблица растворимости
Праздники сегодня

Предмет и задачи химии. Когда и как возникла химическая наука. Методы науки химии

 

laboratornaya posyda.png

Слово «химия» в современном мире часто вызывает отрицательную реакцию. В воображении предстают отравленные водоемы, кислотные дожди, вредные химические добавки к пище и т. д. Но химия окружает нас повсюду. Нет ни одной сферы, где бы не использовались продукты химической и нефтехимической промышленности. Школьная тетрадь, книга, ручка, доска, мебель, одежда, дома, машины и многое-многое другое изготовлены благодаря знаниям химии.
Химия — интересная и сложная наука.
Для овладения ею необходимо не только усвоить изучаемый материал, но и научиться применять полученные знания в повседневной жизни.
Для каждого человека важно знание основ химической науки и понимание химических процессов для объяснения природных явлений, правильного использования химических знаний с целью улучшения своего быта, сохранения здоровья и окружающей среды.
Знания по химии нужны для развития химического производства, улучшения качества жизни людей. Грамотное использование химических знаний позволяет человечеству решать важнейшие проблемы современности — продовольственную, энергетическую, экологическую.
Пример: так, продуктивность сельскохозяйственного производства во многом зависит от того, как химическая промышленность обеспечивает его минеральными удобрениями и средствами защиты растений от вредителей. Велика роль химии в производстве строительных материалов, синтетических тканей, пластмасс, красок, моющих средств, медикаментов. Химия обеспечивает переработку полезных ископаемых в ценные продукты: металлы и их сплавы, топливо.
Обратите внимание! Неумелое, неконтролируемое использование продуктов химического производства приводит к загрязнению окружающей среды, что губительно действует на живые организмы!
Поэтому химию надо последовательно и внимательно изучать. Прежде всего нужно усвоить основные законы и важнейшие химические понятия, учиться применять эти знания в различных жизненных ситуациях

I. Учебный фильм: “Мир химии”

II. Предмет химии

III. История развития химии

1. Предалхимический период: до III в

 
«Квадрат противоположностей» — графическое отображение взаимосвязи между элементами

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развивались относительно независимо друг от друга.

Практические операции с веществом являлись прерогативой ремесленной химии. Начало её зарождения следует в первую очередь связывать, видимо, с появлением и развитием металлургии. В античную эпоху были известны в чистом виде семь металлов: медь, свинец, олово, железо, золото, серебро и ртуть, а в виде сплавов — ещё и мышьяк, цинк и висмут. Помимо металлургии, накопление практических знаний происходило и в других областях, таких как производство керамики и стекла, крашение тканей и дубление кож, изготовление лекарственных средств и косметики. Именно на основе успехов и достижений практической химии древности происходило развитие химических знаний в последующие эпохи.

Попытки теоретического осмысления проблемы происхождения свойств вещества привели к формированию в античной греческой натурфилософии учения об элементах-стихиях. Наибольшее влияние на дальнейшее развитие науки оказали учения Эмпедокла, Платона и Аристотеля. Согласно этим концепциям все вещества образованы сочетанием четырёх первоначал: земли, воды, воздуха и огня. Сами элементы при этом способны к взаимопревращениям, поскольку каждый из них, согласно Аристотелю, представляет собой одно из состояний единой первоматерии — определённое сочетание качеств.

2. Алхимический период: III—XVII вв

 
Открытие фосфора алхимиком Х. Брандом

Алхимический период — это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов. Алхимическая теория, основанная на античных представлениях о четырёх элементах, была тесно переплетена с астрологией и мистикой. Наряду с химико-техническим «златоделием» эта эпоха примечательна также и созданием уникальной системы мистической философии. Алхимический период, в свою очередь, разделяется на три подпериода: александрийскую (греко-египетскую), арабскую и европейскую алхимию.

 
«Хризопея Клеопатры» — изображение из алхимического трактата александрийского периода

3. Период становления (объединения): XVII—XVIII вв

Вторая половина XVII века ознаменовалась первой научной революцией, результатом которой стало новое естествознание, целиком основанное на экспериментальных данных. Создание гелиоцентрической системы мира (Н. Коперник, И. Кеплер), новой механики (Г. Галилей), открытие вакуума и атмосферного давления (Э. Торричелли, Б. Паскаль и О. фон Герике) привели к глубокому кризису аристотелевской физической картины мира. Ф. Бэкон выдвинул тезис о том, что решающим доводом в научной дискуссии должен являться эксперимент; в философии возродились атомистические представления (Р. Декарт, П. Гассенди).

Одним из следствий этой научной революции явилось создание новой химии, основоположником которой традиционно считается Р. Бойль. Бойль, доказав несостоятельность алхимических представлений об элементах как носителях неких качеств, поставил перед химией задачу поиска реальных химических элементов. Элементы, по Бойлю, — практически неразложимые тела, состоящие из сходных однородных корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Главной задачей химии Бойль считал изучение состава веществ и зависимости свойств вещества от его состава.

Процесс превращения химии в науку завершился открытиями А. Л. Лавуазье. С создания им кислородной теории горения (1777 год) начался переломный этап в развитии химии, названный «химической революцией». Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. В 1789 году Лавуазье издал свой знаменитый учебник «Элементарный курс химии», целиком основанный на кислородной теории горения и новой химической номенклатуре. Он привёл первый в истории новой химии список химических элементов (таблицу простых тел). Критерием определения элемента он избрал опыт, и только опыт, категорически отвергая любые неэмпирические рассуждения об атомах и молекулах, само существование которых невозможно подтвердить опытным путём. Лавуазье сформулировал закон сохранения массы, создал рациональную классификацию химических соединений, основанную, во-первых, на различии в элементном составе соединений и, во-вторых, на характере их свойств.

4. Период количественных законов: конец XVIII — середина XIX в

Главным итогом развития химии в период количественных законов стало её превращение в точную науку, основанную не только на наблюдении, но и на измерении. За открытым Лавуазье законом сохранения массы последовал целый ряд новых количественных закономерностей — стехиометрические законы:

 
Символы атомов Дальтона

Основываясь на законе кратных отношений и законе постоянства состава, объяснить которые, не прибегая к предположению о дискретности материи, невозможно, Дж. Дальтон разработал свою атомную теорию (1808 год). Важнейшей характеристикой атома элемента Дальтон считал атомный вес (массу). Проблема определения атомных весов на протяжении нескольких десятилетий являлась одной из важнейших теоретических проблем химии.

Огромный вклад в развитие химической атомистики внёс шведский химик Й. Я. Берцелиус, определивший атомные массы многих элементов. Он же в 1811—1818 разработал электрохимическую теорию сродства, объяснявшую соединение атомов на основе представления о полярности атомов и электроотрицательности. В 1814 году Берцелиус ввел систему символов химических элементов, где каждый элемент обозначался одной или двумя буквами латинского алфавита, многие обозначения Берцелиуса совпадают с современными международными.

Свою молекулярную теорию, органично дополняющую атомистику Дальтона, разработал А. Авогадро, однако его взгляды долгое время не находили признания.

5. Химия во второй половине XIX в

Для данного периода характерно стремительное развитие науки: были созданы периодическая система элементов, теория химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигли прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах началась дифференциация химии — выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

6. Современный период: с начала XX в

Открытие электронаЭ. Вихертом и Дж. Дж. Томсоном (1897 год) и радиоактивности А. Беккерелем (1896 год) стали доказательством делимости атома, возможность которой стала обсуждаться после выдвижения У. Праутом гипотезы о протиле (1815 год). Уже в начале XX века появились первые модели строения атома: «кексовая» (У. Томсон, 1902 год и Дж. Дж. Томсон, 1904), планетарная (Ж. Б. Перрен, 1901 год и Х. Нагаока, 1903 год), «динамидическая» (Ф. Ленард, 1904). В 1911 Э. Резерфорд, основываясь на опытах по рассеиванию α-частиц, предложил ядерную модель, ставшую основой для создания классической модели строения атома (Н. Бор, 1913 годи А.Зоммерфельд, 1916). Основываясь на ней, Н. Бор в 1921 заложил основы формальной теории периодической системы, объяснившей периодичность свойств элементов периодическим повторением строения внешнего электронного уровня атома.

После открытия делимости атома и установления природы электрона как его составной части возникли реальные предпосылки для разработки теорий химической связи. Первой стала концепция электровалентности Р. Абегга (1904), основанная на идее о сродстве атомов к электрону.

В конце 20-х — начале 30-х годов XX века сформировались принципиально новые — квантово-механические — представления о строении атома и природе химической связи.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами; кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности. Создание надёжного теоретического фундамента привело к значительному росту возможностей прогнозирования свойств вещества. Особенностью химии в XX веке стало широкое использования физико-математического аппарата и разнообразных расчётных методов.

Подлинным переворотом в химии стало появление в XX веке большого числа новых аналитических методов, прежде всего физических и физико-химических (рентгеноструктурный анализ, электронная и колебательная спектроскопия, магнетохимия и масс-спектрометрия, спектроскопия ЭПР и ЯМР, хроматография и т. п.). Эти методы предоставили новые возможности для изучения состава, структуры и реакционной способности вещества.

Отличительной чертой современной химии стало её тесное взаимодействие с другими естественными науками, в результате которого на стыке наук появились биохимия, геохимия и др. разделы. Одновременно с этим процессом интеграции интенсивно протекал и процесс дифференциации самой химии. Хотя границы между разделами химии достаточно условны, коллоидная и координационная химия, кристаллохимия и электрохимия, химия высокомолекулярных соединений и некоторые другие разделы приобрели черты самостоятельных наук.

IV. Методы науки химии

Прежде чем приступить к любой работе и получить определённый результат, человек выбирает наиболее эффективные и доступные способы и приёмы выполнения её, инструмент и приспособления, которые можно использовать для этого, операции, которые необходимо совершить.

Метод (от греческого слова «методос» — путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности.

Видный философ XVII века Ф. Бэкон сравнивал метод познания с «фонарем, освещающим дорогу путнику, идущему в темноте». 

Рассмотрим научные методы познания химии, т.е. методы познания, которые используются для изучения веществ и химических явлений.

Различают 2 уровня научного познания: эмпирический и теоретический.

1. Эмпирические методы познания в химии

Эмпирический уровень - характеризуется исследованием реально существующих объектов. На этом уровне происходит процесс накопления информации об этих объектах с помощью следующих методов: наблюдение, измерение, постановка экспериментов.

В это же время осуществляется первичная систематизация получаемых фактических данных в виде описания, таблиц, схем, графиков и т.д.

Познакомимся с каждым из этих методов отдельно.

  • Наблюдение – это первоначальный метод эмпирического познания, позволяющий получить первичную информацию об объекте изучения.

Наблюдение является целенаправленным, планомерным, активным методом научного познания: оно ведётся для решения заранее поставленных задач, строго по составленному исследователем плану, согласованному с поставленными задачами и сопровождается активными действиями исследователя. Результаты научных наблюдений фиксируются в виде описания признаков наблюдаемого объекта, таблиц, схем и т.д. Всё это является базисом науки, опираясь на который учёные создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным признакам, проводят классификацию, выявляют закономерности.

Наблюдения могут быть непосредственными, воспринимаемыми органами чувств человека, и опосредованными, которые проводятся с использованием технических средств наблюдения: микроскопов, телескопов и др.

В процессе наблюдения могут совершаться открытия новых явлений, позволяющих обосновать какую-либо научную гипотезу или подтвердить какое-либо положение известной теории.

Из всего сказанного следует, что наблюдение является важнейшим методом научного познания, позволяющим собрать обширную информацию об окружающем мире.

  • Эксперимент – более сложный метод эмпирического познания по сравнению с наблюдением. Он отличается от метода наблюдения тем, что в ходе эксперимента исследователь может изменять условия (давление, температуру, напряжение и т.д.), устранять побочные факторы, затрудняющие процесс исследования. Эксперимент может повторяться несколько раз для получения наиболее достоверных результатов.

Условия научного эксперимента: целенаправленность, наличие базы в виде исходных теоретических положений, наличие плана проведения эксперимента, наличие технических средств, наличие специалистов необходимого уровня квалификации.

В зависимости от характера поставленных задач, решаемых в ходе эксперимента, последние подразделяются на исследовательские и проверочные.

Исследовательские эксперименты направлены на обнаружение новых, неизвестных науке свойств изучаемого объекта. Результатом такого эксперимента могут быть выводы, изменяющие представления об этом объекте.

Проверочные эксперименты служат для проверки или подтверждения тех или иных теоретических положений.

  • Измерение – это процесс определения количественных значений свойств изучаемого объекта с помощью специальных технических устройств.

Измерения бывают прямые и косвенные.

Прямые измерения – это такие измерения, при которых значение измеряемой величины выдаётся непосредственно измерительным прибором.

При косвенном измерении искомое значение величины определяют по известной математической зависимости (по формуле), используя для этого данные, полученные при прямых измерениях.

В процессе измерения не всегда требуется участие человека. Измерение может быть включено в работу автоматической информационно-измерительной системы, которая строится на базе электронно-вычислительной техники.

2. Методы теоретического познания в химии

  • Идеализация  представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований. В результате таких изменений могут быть исключены из рассмотрения какие-то свойства, признаки, стороны объектов. Например, в механике идеализация материальной точки как тела, лишенного размеров и массы. Такой прием удобен при описании движения, в том числе атомов и молекул.

Идеализация используется тогда, когда реальные объекты достаточно сложны для имеющихся средств математического анализа, когда некоторые свойства затемняют существо протекающих в объекте процессов.

Роль идеализации как метода научного познания заключается в том, что получаемые на его основе теоретические положения, можно использовать для исследования реальных объектов или явлений.

  • Формализация - заключается в использовании специальной символики, позволяет отвлечься от изучения реальных объектов и оперировать вместо этого символами (знаками). Достоинством формализации является возможность проведения исследований без обращения к какому-либо объекту, кроме этого обеспечивается краткость и четкость записи научной информации.

3. Методы, применяемые на эмпирическом и теоретическом уровнях познания

  • Анализ и синтез

Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью изучения их по отдельности.

Под синтезом понимают соединение составных частей объекта (мысленно или реально) с целью изучения его как единого целого. Для изучения объекта как единого целого необходимо рассматривать его составные части в совокупности, в единстве. В процессе синтеза производится соединение воедино составных частей изучаемого объекта. Анализ и синтез успешно используются в сфере мыслительной деятельности человека, т.е. в теоретическом познании.

V. Задания для закрепления

Задание №1.

Вспомните физические свойства бензина и воды и ответьте на вопрос.
Бензин и вода отличаются друг от друга по следующим физическим свойствам:
а) запах
б) цвет
в) агрегатное состояние
г) плотность

Задание №2.

Выпишите из предложенного списка только "вещества".
а) карандаш
б) графит
в) снежинка
г) полиэтилен
д) линейка
е) гвоздь
ж) железо

ЦОРы

Учебный фильм:“Мир химии”

Видео: “Предмет химии”

Домашнее задание

  1. Параграф 1.
  2. Подготовка к п.р №1.
Документы (всего: 2)
Документы (всего: 2)